Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Qing Hao, ${ }^{\text {a }}$ Hui Zhang, ${ }^{\text {b }}$ Jian-Gu Chen ${ }^{\mathrm{a}}$ and Seik Weng $\mathbf{N g}^{\text {c* }}$

${ }^{\text {a }}$ Department of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, ${ }^{\mathbf{b}}$ State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, People's Republic of China, and ${ }^{\mathrm{c}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.044$
$w R$ factor $=0.110$
Data-to-parameter ratio $=16.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[[diaqua(pyrimidin-2-ylsulfanyl-acetato)lanthanum(III)]-di- μ-pyrimidin-2-ylsulfanylacetato] trihydrate]

The La atom is ten-coordinate in a capped square-antiprismatic geometry in the title polymeric chain structure, $\left\{\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$. Adjacent chains are linked by hydrogen bonds to give a layer structure.

Comment

We have reported several metal derivatives of 4-pyridylthioacetic acid (Fang et al., 2004; Huang, Zhang, Chen \& Ng, 2004; Huang, Zhang, Chen, Zhou et al., 2004; Zhang et al., 2003, $2004 a, b$); the pyridyl N atoms in these complexes typically interact through hydrogen bonds. The studies continue with the 2-pyrimidinyl analog of this heteroarylthioacetic acid; few metal derivatives of this carboxylic acid have been reported (Ng et al., 1993; Ma et al., 2004). The present lanthanum(III) derivative, (I), is chelated by the carboxylate portion of the pyrimidin-2-ylsulfanylacetate, but coordination by water molecules as well as two bridging interactions lead to a tencoordinate environment of the metal atom (Fig. 1). The geometry is better regarded as capped square-antiprismatic (Fig. 2); the capping O atoms are farther away than the other eight O atoms that comprise the square antiprism (Table 1). The compound adopts a chain motif arising from carboxylate bridging (Fig. 3); adjacent chains are linked through hydrogen bonds involving the uncoordinated water molecules (Table 2) to give layers.

Experimental

Pyrimidin-2-ylsulfanylacetic acid ($102 \mathrm{mg}, 0.6 \mathrm{mmol}$) was suspended in a small volume of water-ethanol $(2: 1 \mathrm{v} / \mathrm{v})$ and a few drops of aqueous ammonia was added dropwise until it dissolved completely. Lanthanum nitrate ($86 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added and the mixture was transferred into a Teflon-lined Parr bomb. The bomb was heated at

Received 5 September 2005 Accepted 7 September 2005 Online 14 September 2005

Figure 1
ORTEPII (Johnson, 1976) plot of a portion of the polymeric structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii. [Symmetry codes: (i) $1-x, 1-y$, $1-z$; (ii) $-x, 1-y, 1-z$.]

Figure 2
ORTEPII (Johnson, 1976) plot of the capped square-antiprismatic geometry of La in (I). [Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-$ $y, 1-z$.]

ORTEPII (Johnson, 1976) of the chain structure. The uncoordinated water molecules have been omitted.

413 K for 100 h . The cooled contents were filtered; colorless plates separated after two weeks. Elemental analysis found (calculated) for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{LaN}_{6} \mathrm{O}_{11} \mathrm{~S}_{3}$: C 29.26 (29.35), H 3.40 (3.42), N 11.32% (11.41%). IR (KBr): 3410, 1601, 1535, 1487, 1426, 622, 550, $472 \mathrm{~cm}^{-1}$.

Crystal data

$\left[\mathrm{La}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$D_{x}=1.827 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=736.53$
Monoclinic, $P 2_{1} / c$
$a=8.8145$ (3) А
$b=11.8211$ (5) \AA
$c=25.887$ (1) \AA
$\beta=97.046(1)^{\circ}$
$V=2677.0(2) \AA^{3}$
$Z=4$

Mo $K \alpha$ radiation

Cell parameters from 7684 reflections
$\theta=2.3-28.6^{\circ}$
$\mu=1.90 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, colorless
$0.50 \times 0.22 \times 0.14 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min }=0.504, T_{\max }=0.777$
6110 independent reflections 5749 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-9 \rightarrow 11$
$k=-15 \rightarrow 12$
15909 measured reflections
$l=-33 \rightarrow 32$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0499 P)^{2}\right.$
$+4.1463 P$]
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$ 。
$\Delta \rho_{\text {max }}=1.19 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.75 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

La1-O1	2.590 (3)	La1-O5	2.687 (3)
$\mathrm{La} 1-\mathrm{O} 2$	2.838 (3)	La1-O5 $5^{\text {ii }}$	2.469 (2)
$\mathrm{La} 1-\mathrm{O} 2^{\mathrm{i}}$	2.466 (3)	La1-O6	2.583 (3)
La1-O3	2.584 (3)	La1-O1 w	2.556 (3)
La1-O4	2.560 (3)	La1-O2w	2.518 (3)
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 2$	46.9 (1)	$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{La} 1-\mathrm{O} 2 w$	76.7 (1)
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 2{ }^{\text {i }}$	111.0 (1)	$\mathrm{O} 3-\mathrm{La} 1-\mathrm{O} 4$	50.1 (1)
O1-La1-O3	69.5 (1)	O3-La1-O5	68.3 (1)
O1-La1-O4	72.2 (1)	$\mathrm{O} 3-\mathrm{La} 1-\mathrm{O} 5^{\mathrm{ii}}$	80.8 (1)
O1-La1-O5	125.2 (1)	O3-La1-O6	75.3 (1)
O1-La1-O5 ${ }^{\text {ii }}$	74.7 (1)	O3-La1-O1w	143.3 (1)
O1-La1-O6	141.8 (1)	O3-La1-O2w	136.8 (1)
O1-La1-O1w	76.6 (1)	O4-La1-O5	104.1 (1)
$\mathrm{O} 1-\mathrm{La} 1-\mathrm{O} 2 w$	143.1 (1)	O4-La $-\mathrm{O}^{\text {iii }}$	127.8 (1)
$\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 2{ }^{\text {i }}$	64.2 (1)	O4-La1-O6	74.1 (1)
O2-La1-O3	99.2 (1)	O4-La1-O1w	130.5 (1)
$\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 4$	65.3 (1)	O4-La1-O2w	142.4 (1)
$\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 5$	167.5 (1)	O5-La1-O5 $5^{\text {ii }}$	65.5 (1)
$\mathrm{O} 2-\mathrm{La} 1-\mathrm{O}^{\text {ii }}$	114.9 (1)	O5-La1-O6	48.6 (1)
O2-La1-O6	129.0 (1)	O5-La1-O1w	125.3 (1)
$\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 1 w$	65.3 (1)	O5-La1-O2w	68.6 (1)
$\mathrm{O} 2-\mathrm{La} 1-\mathrm{O} 2 w$	123.8 (1)	O5 ${ }^{\text {ii }}-\mathrm{La} 1-\mathrm{O} 6$	114.1 (1)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{La} 1-\mathrm{O} 3$	125.35 (1)	$\mathrm{O} 5^{\text {ii }}-\mathrm{La} 1-\mathrm{O} 1 w$	77.0 (1)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{La} 1-\mathrm{O} 4$	77.1 (1)	$\mathrm{O} 5^{\text {ii }}-\mathrm{La} 1-\mathrm{O} 2 w$	84.2 (1)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{La} 1-\mathrm{O} 5^{\text {ii }}$	153.8 (1)	O6-La1-O1w	140.8 (1)
$\mathrm{O} 2^{\mathrm{i}}-\mathrm{La} 1-\mathrm{O} 5$	121.5 (1)	$\mathrm{O} 6-\mathrm{La} 1-\mathrm{O} 2 w$	74.5 (1)
$\mathrm{O} 2^{\text {i }}-\mathrm{La} 1-\mathrm{O} 6$	77.9 (1)	$\mathrm{O} 1 w-\mathrm{La} 1-\mathrm{O} 2 w$	69.3 (1)
$\mathrm{O} 2{ }^{\mathrm{i}}-\mathrm{La} 1-\mathrm{O} 1 w$	79.6 (1)		

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 w-\mathrm{H} 1 w 1 \cdots \mathrm{O} 3 w$	0.85 (1)	1.92 (1)	2.749 (5)	165 (4)
$\mathrm{O} 1 w-\mathrm{H} 1 w 2 \cdots \mathrm{O} 4^{\mathrm{i}}$	0.85 (1)	1.93 (2)	2.751 (4)	164 (4)
$\mathrm{O} 2 w-\mathrm{H} 2 w 1 \cdots \mathrm{~N} \mathrm{i}^{\mathrm{i}}$	0.85 (1)	2.05 (2)	2.852 (5)	158 (4)
$\mathrm{O} 2 w-\mathrm{H} 2 w 2 \cdots \mathrm{O} 4 w$	0.85 (1)	1.88 (2)	2.709 (5)	167 (4)
$\mathrm{O} 3 w-\mathrm{H} 3 w 1 \cdots \mathrm{O} 5$	0.85 (1)	1.89 (2)	2.718 (5)	166 (6)
$\mathrm{O} 3 w-\mathrm{H} 3 w 2 \cdots \mathrm{O} 3{ }^{\text {ii }}$	0.85 (1)	2.03 (2)	2.840 (5)	158 (5)
$\mathrm{O} 4 w-\mathrm{H} 4 w 1 \cdots \mathrm{O} 1^{\text {ii }}$	0.85 (1)	2.01 (2)	2.823 (4)	160 (5)
$\mathrm{O} 4 w-\mathrm{H} 4 w 2 \cdots \mathrm{~N} 5$	0.85 (1)	2.13 (3)	2.918 (5)	154 (5)
$\mathrm{O} 5 w-\mathrm{H} 5 w 1 \cdots \mathrm{O} 3 w^{\mathrm{iii}}$	0.85 (1)	2.09 (2)	2.903 (6)	162 (6)
$\mathrm{O} 5 w-\mathrm{H} 5 \mathrm{w} 2 \cdots \mathrm{~N} 4^{\text {i }}$	0.85 (1)	2.08 (2)	2.918 (6)	169 (6)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$; (iii)
$-x,-y+2,-z+1$.

The methylene and aromatic H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.97$ and $0.93 \AA)$ and were included in the refinement in the riding-model approximation, with $U_{\text {iso }}(\mathrm{H})$ values set at $1.2 U_{\text {eq }}(\mathrm{C})$. The water H atoms were located in difference Fourier maps and were refined with distance restraints of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA; their displacement parameters were similarly tied to those of the parent atoms. The final difference Fourier map has a large peak at about $1 \AA$ from atom La1.

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Science Foundation of China (Nos. 20171037 and 20373056), the Fujian Province Science Foundation of China (Nos. 2002 F016 and C0020001) and the University of Malaya for supporting this study.

References

Bruker (2003). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fang, R.-Q., Zhang, X.-M., Wu, H.-S. \& Ng, S. W. (2004). Acta Cryst. E60, m401-m402.
Huang, Y.-Q., Zhang, H., Chen, J.-G. \& Ng, S. W. (2004). Acta Cryst. E60, m1051-m1052.
Huang, Y.-Q., Zhang, H., Chen, J.-G., Zhou, W., Li, L., Wei, Z.-B. \& Ng, S. W. (2004). Acta Cryst. E60, m133-m134.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Ma, C.-L., Han, Y.-F. \& Zhang, R.-F. (2004). J. Organomet. Chem. 689, 16751683.

Ng, S. W., Kumar Das, V. G., Yip, W. H. \& Mak, T. C. W. (1993). J. Crystallogr. Spectrosc. Res. 23, 441-444.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2003). Acta Cryst. E59, m1194-m1195.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2004a). Acta Cryst. E60, m135-m136.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2004b). Acta Cryst. E60, m169-m170.

